Structure based drug designing of a novel antiflaviviral inhibitor for nonstructural 3 protein
نویسندگان
چکیده
UNLABELLED Literature shows that Flaviviruses cause a variety of diseases, including fevers, encephalitis, and hemorrhagic fevers. NS3 is a multifunctional protein with an Nterminal protease domain (NS3pro) that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. Therefore, NS3 protein is the preferential choice for inhibition to stop the proteolytic processing. Hence, the 3D structure of NS3 protein was modeled using homology modeling by MODELLER 9v7. Evaluation of the constructed NS3 protein models were done by PROCHECK, VERYFY3D and through ProSA calculations. Ligands for the catalytic triad were designed using LIGBUILDER. The NS3 protein's catalytic triad was explored to find out the critical interactions pattern for inhibitor binding using molecular docking methodology using AUTODOCK Vina. It should be noted that these predicted data should be validated using suitable assays for further consideration. ABBREVIATIONS DOPE - Discrete optimized protein energy, WHO - World Health Organization, ADME/T - Absorption, Distribution, Metabolism, Excretion and Toxicity.
منابع مشابه
Identification of Agents with Potential Leishmania Malate Dehydrogenase Inhibitor Activity: A Proteomic and Molecular Docking Approach
Background and purpose: Leishmaniasis is one of the most important infectious diseases caused by different species of the Leishmania, which is a public health problem worldwide. So far, no effective vaccine is introduced for this disease and drug therapy is associated with many side effects. Therefore, this study was designed to identify novel FDA-approved compounds with anti-leishmanial activ...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملCalixarbutin: A Novel Calixarene-based Potential Water-soluble Anti-tyrosinase Agent with High Anti-melanoma Activity
Since melanocytes are the origin of melanoma and some skin disorders such as melasma, they are important cells from the perspective of medicinal chemistry. Therefore, a medication that can simultaneously overcome these diseases will be a successful potential therapeutic agent. Arbutin with phenolic structure is a powerful natural anti-tyrosinase agent. Hence, the phenolic structure of this drug...
متن کاملCalixarbutin: A Novel Calixarene-based Potential Water-soluble Anti-tyrosinase Agent with High Anti-melanoma Activity
Since melanocytes are the origin of melanoma and some skin disorders such as melasma, they are important cells from the perspective of medicinal chemistry. Therefore, a medication that can simultaneously overcome these diseases will be a successful potential therapeutic agent. Arbutin with phenolic structure is a powerful natural anti-tyrosinase agent. Hence, the phenolic structure of this drug...
متن کامل